2 resultados para urinary excretion

em Universidade Federal do Pará


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-Melanocyte-stimulating hormone (-MSH; 0.6 and 3 nmol) microinjected into the anteroventral region of the third ventricle (AV3V) induced a significant increase in diuresis without modifying natriuresis or kaliuresis. Intraperitoneal (ip) injection of -MSH (3 and 9.6 nmol) induced a significant increase in urinary sodium, potassium and water excretion. Intraperitoneal (3 and 4.8 nmol) or iv (3 and 9.6 nmol) administration of -MSH did not induce any significant changes in plasma atrial natriuretic peptide (ANP), suggesting that the natriuresis, kaliuresis and diuresis induced by the systemic action of -MSH can be dissociated from the increase in plasma ANP. These preliminary results suggest that -MSH may be involved in a -MSHindependent mechanism of regulation of hydromineral metabolism.